3.418 \(\int \frac{\cot ^4(c+d x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=100 \[ -\frac{\cot ^5(c+d x)}{5 a d}-\frac{\cot ^3(c+d x)}{3 a d}-\frac{\tanh ^{-1}(\cos (c+d x))}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}-\frac{\cot (c+d x) \csc (c+d x)}{8 a d} \]

[Out]

-ArcTanh[Cos[c + d*x]]/(8*a*d) - Cot[c + d*x]^3/(3*a*d) - Cot[c + d*x]^5/(5*a*d) - (Cot[c + d*x]*Csc[c + d*x])
/(8*a*d) + (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.171977, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2839, 2607, 14, 2611, 3768, 3770} \[ -\frac{\cot ^5(c+d x)}{5 a d}-\frac{\cot ^3(c+d x)}{3 a d}-\frac{\tanh ^{-1}(\cos (c+d x))}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}-\frac{\cot (c+d x) \csc (c+d x)}{8 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^4*Csc[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

-ArcTanh[Cos[c + d*x]]/(8*a*d) - Cot[c + d*x]^3/(3*a*d) - Cot[c + d*x]^5/(5*a*d) - (Cot[c + d*x]*Csc[c + d*x])
/(8*a*d) + (Cot[c + d*x]*Csc[c + d*x]^3)/(4*a*d)

Rule 2839

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2611

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[(b^2*(n - 1))/(m + n - 1), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cot ^4(c+d x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx &=-\frac{\int \cot ^2(c+d x) \csc ^3(c+d x) \, dx}{a}+\frac{\int \cot ^2(c+d x) \csc ^4(c+d x) \, dx}{a}\\ &=\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}+\frac{\int \csc ^3(c+d x) \, dx}{4 a}+\frac{\operatorname{Subst}\left (\int x^2 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{a d}\\ &=-\frac{\cot (c+d x) \csc (c+d x)}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}+\frac{\int \csc (c+d x) \, dx}{8 a}+\frac{\operatorname{Subst}\left (\int \left (x^2+x^4\right ) \, dx,x,-\cot (c+d x)\right )}{a d}\\ &=-\frac{\tanh ^{-1}(\cos (c+d x))}{8 a d}-\frac{\cot ^3(c+d x)}{3 a d}-\frac{\cot ^5(c+d x)}{5 a d}-\frac{\cot (c+d x) \csc (c+d x)}{8 a d}+\frac{\cot (c+d x) \csc ^3(c+d x)}{4 a d}\\ \end{align*}

Mathematica [A]  time = 0.585639, size = 189, normalized size = 1.89 \[ -\frac{\csc ^5(c+d x) \left (-180 \sin (2 (c+d x))-30 \sin (4 (c+d x))+320 \cos (c+d x)+80 \cos (3 (c+d x))-16 \cos (5 (c+d x))-150 \sin (c+d x) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+75 \sin (3 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-15 \sin (5 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+150 \sin (c+d x) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-75 \sin (3 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+15 \sin (5 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )}{1920 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^4*Csc[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

-(Csc[c + d*x]^5*(320*Cos[c + d*x] + 80*Cos[3*(c + d*x)] - 16*Cos[5*(c + d*x)] + 150*Log[Cos[(c + d*x)/2]]*Sin
[c + d*x] - 150*Log[Sin[(c + d*x)/2]]*Sin[c + d*x] - 180*Sin[2*(c + d*x)] - 75*Log[Cos[(c + d*x)/2]]*Sin[3*(c
+ d*x)] + 75*Log[Sin[(c + d*x)/2]]*Sin[3*(c + d*x)] - 30*Sin[4*(c + d*x)] + 15*Log[Cos[(c + d*x)/2]]*Sin[5*(c
+ d*x)] - 15*Log[Sin[(c + d*x)/2]]*Sin[5*(c + d*x)]))/(1920*a*d)

________________________________________________________________________________________

Maple [A]  time = 0.135, size = 170, normalized size = 1.7 \begin{align*}{\frac{1}{160\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}-{\frac{1}{64\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}}+{\frac{1}{96\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{1}{16\,da}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{1}{16\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{1}{160\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-5}}+{\frac{1}{64\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-4}}+{\frac{1}{8\,da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{1}{96\,da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*csc(d*x+c)^6/(a+a*sin(d*x+c)),x)

[Out]

1/160/d/a*tan(1/2*d*x+1/2*c)^5-1/64/d/a*tan(1/2*d*x+1/2*c)^4+1/96/d/a*tan(1/2*d*x+1/2*c)^3-1/16/d/a*tan(1/2*d*
x+1/2*c)+1/16/d/a/tan(1/2*d*x+1/2*c)-1/160/d/a/tan(1/2*d*x+1/2*c)^5+1/64/d/a/tan(1/2*d*x+1/2*c)^4+1/8/d/a*ln(t
an(1/2*d*x+1/2*c))-1/96/d/a/tan(1/2*d*x+1/2*c)^3

________________________________________________________________________________________

Maxima [B]  time = 1.13519, size = 263, normalized size = 2.63 \begin{align*} -\frac{\frac{\frac{60 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{15 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{6 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a} - \frac{120 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac{{\left (\frac{15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{10 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{60 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - 6\right )}{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}{a \sin \left (d x + c\right )^{5}}}{960 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/960*((60*sin(d*x + c)/(cos(d*x + c) + 1) - 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 15*sin(d*x + c)^4/(cos(
d*x + c) + 1)^4 - 6*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a - 120*log(sin(d*x + c)/(cos(d*x + c) + 1))/a - (15*
sin(d*x + c)/(cos(d*x + c) + 1) - 10*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 60*sin(d*x + c)^4/(cos(d*x + c) + 1
)^4 - 6)*(cos(d*x + c) + 1)^5/(a*sin(d*x + c)^5))/d

________________________________________________________________________________________

Fricas [A]  time = 1.10251, size = 452, normalized size = 4.52 \begin{align*} \frac{32 \, \cos \left (d x + c\right )^{5} - 80 \, \cos \left (d x + c\right )^{3} - 15 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) + 15 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) + 30 \,{\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \,{\left (a d \cos \left (d x + c\right )^{4} - 2 \, a d \cos \left (d x + c\right )^{2} + a d\right )} \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/240*(32*cos(d*x + c)^5 - 80*cos(d*x + c)^3 - 15*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(1/2*cos(d*x + c)
 + 1/2)*sin(d*x + c) + 15*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) +
30*(cos(d*x + c)^3 + cos(d*x + c))*sin(d*x + c))/((a*d*cos(d*x + c)^4 - 2*a*d*cos(d*x + c)^2 + a*d)*sin(d*x +
c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**6/(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.35326, size = 212, normalized size = 2.12 \begin{align*} \frac{\frac{120 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a} + \frac{6 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 15 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 10 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 60 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{5}} - \frac{274 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 60 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 10 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 15 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 6}{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5}}}{960 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^6/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/960*(120*log(abs(tan(1/2*d*x + 1/2*c)))/a + (6*a^4*tan(1/2*d*x + 1/2*c)^5 - 15*a^4*tan(1/2*d*x + 1/2*c)^4 +
10*a^4*tan(1/2*d*x + 1/2*c)^3 - 60*a^4*tan(1/2*d*x + 1/2*c))/a^5 - (274*tan(1/2*d*x + 1/2*c)^5 - 60*tan(1/2*d*
x + 1/2*c)^4 + 10*tan(1/2*d*x + 1/2*c)^2 - 15*tan(1/2*d*x + 1/2*c) + 6)/(a*tan(1/2*d*x + 1/2*c)^5))/d